Optically Active Co-ordination Compounds. Part XXXVII.¹ Chiroptical Properties of the Ethylenediaminebis(1,10-phenanthroline)cobalt(III) Ion

By L. S. Dollimore and R. D. Gillard,* The Chemical Laboratory, University of Kent at Canterbury, Canterbury

The ion $[Co(en)(phen)_2]^{3+}$ has been resolved into enantiomers by use of (-)tris(cysteinesulphinato)cobaltate(III). Contributions in its c.d. spectrum from the 'exciton ' bands of the *cis*-bis(1,10-phenanthroline) moiety, and from the *d*-*d* bands of the cobalt ion, provide a correlation between the empirical configurational assignment based on *d*-*d* bands and the assignment based on the inherently dissymmetric exciton region.

WE have now completed the series of resolutions for the complexes $[Co(en)_x(phen)_{3-x}]^{3+}$ (A, x = 0; B, x = 1; C, x = 2; D, x = 3) by resolving B, the ethylenediaminebis(1,10-phenanthroline)cobalt(III) ion. This is the first complete series in which the end-members exciton c.d.³ for B, where only two *cis*-di-imine ligands couple, is, as expected, considerably smaller than that for A, or other tris-complexes. The c.d. in the exciton region of other tris-bis pairs $\{e.g.^4 [Ru(phen)_3]^{2+}$ and $[Ru(phen)_2(py)_2]^{2+}$ shows the same feature.

C.d. spectra of A, $[Co(phen)_3]^{3+}$ (355-300 nm, $\Delta \epsilon/10$: <300 nm, $\Delta \epsilon/50$): B, $[Co(en)(phen)_2]^{3+}$ (<310 nm, $\Delta \epsilon/20$): C, $[Co(en)_2(phen)]^{3+}$ (<340 nm, $\Delta \epsilon/4$): D, $[Co(en)_3]^{3+}$

involve fully saturated ligands $\{i.e. D, [Co(en)_3]^{3+}\}$ and fully unsaturated ligands $\{i.e. A, [Co(phen)_3]^{3+}\}$. Interestingly, the four less-soluble diastereoisomeric salts formed with the novel resolving agent ${}^2(-)$ - $[Co(cysu)_3]^{3-}$ all contain cations having the Λ configuration.

The c.d. spectra are presented in the Figure. The

* Present address: Department of Chemistry, University College, Cardiff CF11XL.

² L. S. Dollimore and R. D. Gillard, J.C.S. Dalton, 1973, 933.

This finding reinforces an earlier demonstration ⁵ of the same point which used the species (+)-[Co- $(\text{phen})_3$]³⁺ (A of this work). Despite the presence of anomalously large c.d. absorption at *ca.* 380 nm (our value for $\Delta \varepsilon$, -3.9, is larger than that recorded ⁵) the exciton and longest wavelength c.d. bands gave self-consistent assignments of configuration (Λ).

³ S. F. Mason, Inorg. Chim. Acta Rev., 1968, 2, 89.

⁴ B. Bosnich, Accounts Chem. Res., 1969, 2, 266.

⁵ S. F. Mason and B. J. Norman, J. Inorg. Nuclear Chem. Letters, 1967, 3, 285.

¹ Part XXXVI, R. D. Gillard, P. R. Mitchell, and C. F. Weick, *J.C.S. Dalton*, 1974, 1635.

Most notably, the exciton region for B shows the typical pattern³ (giving an assignment of Λ configuration) and a very clear d-d band (positive only) giving also ⁶ a Λ assignment. The two methods are in this case very clearly self-consistent.

EXPERIMENTAL

The salt $[Co(en)(phen)_2][ClO_4]_3 \cdot 2H_2O$ was obtained using essentially the method of Palade.⁷ Since difficulties were encountered, details are given.

dissolved in hot water and reprecipitated as the perchlorate $[Co(en)(phen)_2][ClO_4]_3 \cdot 2H_2O$ by addition of an excess of NaClO₄ solution (Found: C, 39.0; H, 3.1; N, 10.5. Calc. for $C_{28}H_{28}Cl_3CoN_6O_{14}$: C, 38.4; H, 3.45; N, 10.8%).

The species $[Co(en)(phen)_2]^{3+}$ was resolved using the complex $K_3(+)$ - $[Co(L-cysu)_3]$ according to the procedure given earlier.² The structure of the $[Co(cysu)_3]^{3-}$ anion is as yet unknown; however, we have measured the ¹³C magnetic resonance spectrum of a saturated neutral solution in H_2O-D_2O of its potassium salt. This shows

		Circular di	chroism s	pectra of [0	$Co(en)_x(phote)$	$[en)_{3-x}]^{3+}$ (x = 0 - 2)			
$(+)[Co(en)_{2}(phen)]^{3+}$	λ ^α	483		316					272	
	Δε°	4 ·08				-3.24			-17.1	a
$(+)[Co(en)(phen)_3]^{3+}$	λ ^α	480				318	303sh	282	270	
	Δε •	3.10				3.4	19.7	$125 \cdot 1$	-118.5	Ь
	λ ^α	463		349	335	317	305	281	274	
	εſ	113		1 820	2770	6510	12 550	48 600	50 900	С
$(+)[Co(phen)_3]^{3+}$	እ ^ፈ	492	378	347	330 sh	318sh	302 sh	283	269	
	Δε •	1.29	-3.93	4.50	8.45	12.6	$39 \cdot 6$	233	-140	a

^{*a*} From ref. 2. ^{*b*} This work. ^{*c*} Absorption spectrum. ^{*d*} In nm. ^{*c*} The sign for $\Delta \epsilon$ is + unless expressly stated. ^{*f*} Isotropic molar extinction coefficient, $1 \text{ mol}^{-1} \text{ cm}^{-1}$.

The compound [CoCl₂(phen)₂]Cl·4¹/₂H₂O (2·0 g), made by the method ⁸ of Ablov (Found: C, 47.7; H, 3.6; N, 9.15. Calc. for C24H25Cl3CoO4.5: C, 47.6; H, 5.3; N, 9.20%) was suspended in hot ethanol (30-40 ml) and an aqueous solution of ethylenediamine (20% w/v; 1.5 ml) was added, whereupon the solution became yellow-orange. On cooling, yellow crystals containing the species [Co(en)₂(phen)]³⁺ rapidly formed and were filtered off. Their electronic spectrum in water was identical to that of an authentic sample. The filtrate, when set aside overnight, afforded a further batch of crystals. The electronic spectrum of a solution of these crystals was unlike that of either $[Co(en)_2(phen)]^{3+}$ or $[Co(phen)_3]^{3+}$ and cation-exchange chromatography (SP-Sephadex C-25) demonstrated the presence of only one species. The crystals were re-⁶ R. D. Gillard and P. R. Mitchell, 'Structure and Bonding,' 1970, 7, 46, and references therein.

three signals of equal intensity at (p.p.m. relative to Me_4Si) 175.27 (sharp, due to CO_2H), 66.67 (broader, probably due to the CH_2), and 57.94 (sharper, due to asymmetric carbons). In view of this simplicity, it seems probable that we are dealing with a *facial*-isomer.

Analysis of the diastereoisomer showed it to be a 1:1 salt with seven water molecules of crystallisation (Found: C, 38.0; H, 4.3; N, 11.0. Calc. for (+)-[Co(en)(phen)₂]-(+)-[Co(cysu)₃]·7H₂O, C₃₅H₅₃Co₂N₉O₁₉S₃: C, 37.6; H, 4.8; N, 11.3%).

We thank the Medical Research Council for a studentship (L. S. D.) and Courtaulds Trust Fund for a grant to purchase the c.d. spectrometer.

[3/1932 Received, 19th September, 1973]

⁷ D. M. Palade, Russ. J. Inorg. Chem., 1967, 12, 520.
⁸ A. V. Ablov, Russ. J. Inorg. Chem., 1961, 6, 157.